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Corrections to leading singularities in systems at the upper 
critical dimension 
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Abstract. Renormalisation group methods are used to calculate the behaviour of the order 
parameter on the coexistence curve and the critical isotherm of a one-component spin 
system at four dimensions, and the order parameter of a three-dimensional uniaxial dipolar 
ferromagnet. For the four-dimensional system, the amplitudes of the subleading cor- 
rections are obtained and found to be in disagreement with the results of a recent Monte 
Carlo study. We show how the discrepancy may be removed by fitting the Monte Carlo data 
to a crossover scaling function for the order parameter rather than to an asymptotic form. 
For the three-dimensional system the amplitude of the subleading correction is found to be 
in reasonable agreement with experimental results on the uniaxial dipolar ferromagnet 
LiHoF, . 

1. Introduction 

Much work has recently been performed on the critical behaviour of systems at their 
upper critical or marginal dimension, the spatial dimension which separates classical 
mean-field theory from non-classical behaviour. At the upper critical dimension the 
Renormalisation Group (RG) equations can be solved exactly without recourse to 
&-expansions and so independent experimental investigations provide important tests 
to the validity of RG predictions. 

It is now well known that at the upper critical dimension RG theory predicts that the 
asymptotic critical behaviour is classical apart from logarithmic factors (Larkin and 
Khmel'nitskii 1969). RG theory, however, allows not only for the calculation of 
quantities which characterise the asymptotic critical behaviour, but also for additional 
quantities describing the approach to the critical regime. More specifically, it predicts 
that as we move away from the critical regime, the leading singularities will be modified 
by correction terms, some of whose amplitudes may also be calculated, at the marginal 
dimension, within the RG framework. 

In a paper by Mouritsen and Knak Jensen (1979) a Monte Carlo study was made, to 
look at the subleading correction to the order parameter of a four-dimensional Ising 
ferromagnet. From their investigations they were able to quote a value for the critical 
amplitude of the subleading correction term assuming a form as predicted by the RG for 
the order parameter. In the course of this work we show that the RG prediction for this 
amplitude is in disagreement by an order of magnitude with that from the Monte Carlo 
study. We give a possible reason for the discrepancy and suggest that, rather than fitting 
the Monte Carlo data to an asymptotic function with a correction term, it should instead 
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be fitted with a crossover scaling function as we move into a higher reduced temperature 
regime where crossover effects from Ising-to-Gaussian behaviour become important. 

Therefore, in the first section of this paper we obtain a crossover scaling represen- 
tation of the order parameter at four dimensions using the Gaussian-Ising crossover 
formalism following Bruce and Wallace (1976). We show that in the asymptotic limit 
- t  = (Tc- T ) / T ,  -f 0 this reduces to the asymptotic form used for fitting the Monte 
Carlo data but that the critical amplitude is in disagreement with the fit; we thus proceed 
to fit the full crossover scaling function to the data. 

Following this we quote the result of a similar calculation for the critical isotherm 
and also compare with Monte Carlo investigations (Mouritsen and Knak Jensen, 198 1 
private communication). 

In the final section of the paper we take a brief look at a different system, namely a 
uniaxial dipolar-coupled ferromagnet whose upper critical dimension is three. As for 
the short-range system we calculate the subleading correction to the leading singularity 
of the order parameter and compare it with recent experimental results on the 
three-dimensional uniaxial dipolar ferromagnet LiHoF4 (Griffin et a1 1980). 

2. Two-loop crossover scaling function for the order parameter 

2.1. Calculation 

The problem we consider is based on the standard Ginzburg-Landau-Wilson effective 
Hamiltonian: 

XG d 4 ~ ( 4 ( V 4 ) 2 + i ( m &  + t ) ~ 2 + i R ~ 2 ( V 2 + ) 2 +  ud4/4!-H4) (2.1) J 
for a one-component field 4. The bare mass term mo enters in mi = mic + t where moc 
is the bare mass of the critical theory and t is a measure of the reduced temperature 
( T  - Tc)/Tc. The fourth-order derivatives implement the large momentum cut-off and 
the quartic term is expressed in terms of the bare coupling U which is dimensionless at 
four dimensions. Finally we allow for the presence of an external field, H. 

The particular form of the renormalisation group we shall use is due to Zinn-Justin 
(1973). Such a formulation has been applied by Bruce and Wallace (1976) in a 
calculation of the crossover behaviour for the susceptibility in d = 4 - E dimensions and 
subsequently by Theumann (1980) for the specific heat. 

In this paper we follow the approach of Bruce and Wallace but work directly in d = 4 
dimensions. In the presence of an external field the order parameter obeys the 
renormalisation group equation (see e.g. Brezin et a1 1976) 

(2.2) 
a a + p (U) - - ( y4( U )  - y3( U)) t - + :r3( U j a u  at [ R 

M (  U, t, H, R j = 0. 

The coefficients @(U), y4(u)  and y3 (u )  have been obtained to two loops by Bruce and 
Wallace, so that at d = 4 for a one-component field: 

p (U) = 3 U - Y U  + O( U ') (2.3) 

y4(u)  = + u 2 +  0(u3) (2.4) 

y 3 ( u j  = iu2+0(u3). (2.5) 
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The RG equation (2.2) is integrated by the method of characteristics using the results 
for the coefficients (2.3)-(2.5). Hence we define T =In A and introduce U(?), t ( ~ )  and 
H ( T )  such that 

The initial conditions are u(0)  = U, t(0) = t, H(0)  = H and correspond to the original 
physical system with coupling U, reduced temperature t, external field H and cut-off 
A = eo = 1. (2.2) then reduces to 

M ( u ,  t, H, 1) = exp(i luu(T) y30) du(r))M(u(T), t ( ~ ) ,  H ( T ) ,  el). 
P (U (7)) 

(2.9) 
By choosing T so that M ( u ( T ) ,  t ( ~ ) ,  H ( T ) ,  eT) is the magnetisation of a system far from 
T,, we can obtain M ( u ,  t, H, 1) for t << 1 and hence the critical behaviour of the system. 

Further, since M ( u ( T ) ,  t ( ~ ) ,  H ( T ) ,  eT) is required outside the critical region, we can 
evaluate it using a Feynman graph expansion (see e.g. Wallace 1976). 

6t(T) 
U (7) 

M'(u (T) ,  t ( ~ ) ,  0, eT) = --{I - u(~)[In(-2t(~)/e") + ~ ] + O ( U ( T ) ~ ) }  (2.10) 

where H ( T )  has been set equal to zero since we wish to evaluate the spontaneous 
magnetisation in the absence of an external field. 

A matching condition is now needed to fix the value of T and a suitable choice is 
given by 

t ( ~ )  = -ezT. (2.11) 

Using (2.9), (2.10), (2.11) and integrating (2.6)-(2.8) we obtain a parametric 
representation of the crossover scaling function for the order parameter 

kf2(t)=B(-t)U(T)-2'3[1+ c U ( T ) + o ( U 2 ( T ) ) ]  (2.12) 

with 

-t = to e x p ( - 2 / 3 u ( ~ ) ) u ( ~ ) ~ ~ ' ~ ~ [ ~  + o ( U ( T ) ) ]  (2.13) 

where B, to and C are non-universal system-dependent factors. 
These two equations provide a possible form with which one may attempt to fit the 

Monte Carlo data for M ( t )  in the four-dimensional Ising model. In the asymptotic 
regime t/to<< 1, the expressions can be simplified. Clearly from (2.13), we see that U ( T )  

must then also be small, and we can solve systematically for ~ ( 7 ) :  

(2.14) 

Note that in this equation, the coefficient of the correction of order l /~ln(-t / to)~ changes 
if we change the scale to. By a similar argument, when we substitute (2.14) into (2.12), 
we see that the term CU(T) - 2C/(3)ln(-t/to)l) has the same character: in the asymptotic 
regime, the freedom of choice of both C and to is illusory. Alternatively stated, in the 
asymptotic regime, C may be set to zero given the freedom of choice of to. 
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Hence, for t << to, an alternative parametric form for M ( t )  is given by 

M 2 ( t )  = B(-~)u(T)~-’/’[I + o(U2(T))]. (2.15) 

Yet another form may be obtained by effecting the above substitution: 

(2.16) 

where it should be understood that O(l/~ln(-r/ro)/) becomes O(l/~ln(-r/ro)~2) with a 
suitable choice of to. 

It is worth noting, however, that this discussion of the insignificance of l /~ln(- t / to)~ 
corrections must be refined if we have two quantities at our disposal, e.g. the suscep- 
tibility ~ ( t )  in addition to M ( t ) .  The l//ln(-t/to)l correction can, by an appropriate 
choice of to, be made to vanish for one or the other of these quantities but not in general 
for both. If this correction is set to zero in M ( t ) ,  the resulting correction in X ( t )  is 
significant. 

2.2. Discussion 

Mouritsen and Knak Jensen (1979) have obtained a value for the coefficient of the 
subleading correction term by fitting an equation of the form 

M ( t )  = B(-t)1’211n(-t)/1’3[1 + Q(lnlln(-t)(/lln(-t)l)] (2.17) 

to Monte Carlo data obtained on a four-dimensional spin-: Ising ferromagnet in a 
simple hypercubic lattice over the reduced temperature range 0.01 < - t  < 0.56. The 
value they obtain for Q, namely 

Q = -0.030*0.002, (2.18) 

is in disagreement, by an order of magnitude, with the RG result, (2.16). 
A possible reason for this disagreement is that in extrapolating to relatively high 

values of I t ( ,  ( / t i  = l ) ,  (2.17) is not a valid fitting function because of the slow variation of 
the logarithmic correction terms. As a result, the value of Q obtained by fitting (2.17) to 
the Monte Carlo data describes the effect of several subleading correction terms. In 
extending the range of reduced temperature out to It1 2- 1, it seems reasonable to 
describe the temperature variations of the order parameter not by an asymptotic series 
such as (2.17), but rather by a crossover scaling function, since we are presumably near 
the region where crossover from Ising-to-Gaussian behaviour is taking place. As a 
result we attempted to constrain a fit to the form of the crossover scaling representation 
of the order parameter. When two-parameter fits were made using the universal forms 
of the crossover scaling function, (2.15) (2.13) and (2.16), the overall quality of the fit 
was poor and strongly dependent on the temperature range over which the data was 
fitted. In a typical fit, we found to to be of the order 1, so that -t / to is not small if one 
attempts to fit out to -t  = 1. Since these universal forms have been shown, in the 
previous section, to be appropriate for use only in the asymptotic region where - t / to  << 1 
or equivalently in the small-coupling regime, we assume that the poorness of fit is due to 
the bare coupling not being small in the model from which the Monte Carlo data was 
obtained. We thus proceeded to fit the data using the non-universal crossover scaling 
function, (2.12)-(2.13), which allows for a larger coupling by the inclusion of a term 
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Figure 1. Temperature variation of the order parameter at four dimensions: open circles, 
Monte Carlo data; full curve, two-loop crossover, equations (2.12)-(2.13) with E = 1.530, 
C = -2.832, to = 30.00. 

proportional to u ( 7 )  in the square brackets of equation (2.12). The result of this 
three-parameter fit is displayed in figure 1. 

In the range of reduced temperatures over which the Monte Carlo data was fitted by 
the asymptotic form (2.17), namely 0.01 <-t<0.56, we obtained a fit, using this 
crossover scaling function, of comparable quality to that using the asymptotic function 
(2.17). The improvement, however, is that this crossover scaling form reduces to the 
theoretically correct asymptotic function (2.17) as shown in the previous section and 
thus there is no real discrepancy between data and theory. Nevertheless, it is also clear 
that the fit is still in disagreement with the data as one proceeds to higher reduced 
temperatures. Again this is only to be expected; for example, we have taken t =  
( T  - Tc)/Tc as our scaling field and we have therefore assumed that we are working in a 
temperature regime where t is small enough so that we can use a scaling field that is 
linear in t .  As we proceed into the crossover region it is no longer clear that this linearity 
hypothesis remains valid (Riedel and Wegner 1974). 
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Similar remarks can be made for other quantities of interest. In particular, for the 
critical isotherm we find, by a similar calculation to that performed above 

(2.19) 

Once again the value of the correction amplitude has been obtained by performing a fit 
to Monte Carlo data with the trial function (Mouritsen and Knak Jensen, private 
communication j 

(2.20) 

and a preliminary analysis is consistent with Q = -0.3, in slightly better agreement with 
the theoretical prediction than for the coexistence curve result. 

3. Three-dimensional uniaxial dipolar ferromagnet 

Although the discussion so far has been restricted to a four-dimensional system, it is 
also relevant when considering other systems at their upper critical dimension. In 
particular, theory predicts that there is a correspondence, at leading order, between the 
four-dimensional short-range king system and the three-dimensional uniaxial ferro- 
magnet with long-range dipolar coupling (Larkin and Khmel'nitskii 1969, Brezin and 
Zinn-Justin 1976). Recently the critical behaviour of the spontaneous magnetisation in 
the uniaxial dipolar-coupled ferromagnet LiHoF, has been measured using a light 
scattering technique (Griffin et a1 1980) and the results fitted to an equation of the form 

The values obtained for the amplitudes are C1 = 0.07 * 0.30 and C, = 0.29 f 0.07 in the 
reduced temperature range 1.3 x lop3 < -t < 1.3 x lo-'. 

We have performed a calculation following BrCzin and Zinn-Justin (1976) for the 
magnetisation below T, and find 

Thus RG predicts that C1 = -0.30. 

(3. l), its coefficient C, is again non-universal in the sense discussed in § 2. 
One should note that although there is an additional l/lln(-t>l correction term in 

4. Concluding remarks 

To summarise, we have calculated using field-theoretical methods the renormalisation 
group values for the amplitudes of the subleading corrections to the order parameter 
and critical isotherm of a four-dimensional Ising ferromagnet and to the order 
parameter of a three-dimensional unaxial dipolar-coupled ferromagnet. For the 
four-dimensional short-range system it is found that the theoretical predictions are not 
in good agreement with the values obtained by fitting an asymptotic form with a 
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subleading correction to Monte Carlo data. For the three-dimensional long-range 
system, there is better agreement, although the subleading correction amplitude is, as 
yet, poorly determined experimentally. 

A likely reason for these differences seems to be that in extending into a regime 
where crossover phenomena become important, it may no longer be valid to use 
asymptotic functions, with the slowly varying logarithmic corrections that are charac- 
teristic of systems a t  their upper critical dimensions, as fitting equations. It is suggested 
that, in these cases, more suitable fitting functions are the full crossover scaling 
functions. We have found that, for the order parameter of the four-dimensional 
short-range system, the crossover scaling form provides as good a fit to the data as does 
the asymptotic form, but by employing the crossover fitting form we remove the 
discrepancy between theory and data since the crossover scaling function reduces, in the 
limit - t  + 0, to the theoretically correct asymptotic form. However, there still remains 
some disagreement between data and theory, even when a crossover scaling function is 
used, and we suggest that this is due to the use of linear scaling fields in a region where 
the linearity hypothesis is no longer justifiable. 

In conclusion, the moral seems to be the need to exercise extreme caution when 
fitting slowly varying asymptotic forms away from the critical region even when 
correction terms are included. 
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